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1 Introduction

Stochastic dominance criteria have been important instruments in the
welfare economist�s toolkit since Atkinson�s (1970) paper on the mea-
surement of inequality. Many dominance criteria for the measurement of
welfare, inequality and poverty have been proposed subsequently. Using
dominance tools to compare poverty between distributions is of partic-
ular interest: if poverty dominance holds, the poverty ordering is robust
both to the choice of the poverty measure and the choice of the poverty
line (Atkinson, 1987; Foster and Shorrocks, 1988; Davidson and Duclos,
2000).
To state the dominance results which the present paper focuses on,

we introduce the additive poverty measure

P (z;F ) :=

Z
x6z

�(x; z)dF (x); (1)

where z is the poverty line, � is a function evaluating the contribution
of the income receiver with income x to total poverty in the population,
and F is an income distribution function. Throughout the paper, we
will consider distribution functions with support contained in the real
half-line [0;1).1
Poverty dominance criteria relate dominance of certain functions to

classes of poverty measures. We consider dominance criteria for absolute
and relative poverty measures. A poverty measure is said to be absolute
if its value is una¤ected by adding an equal amount to all incomes and
the poverty line. We will say that a poverty measure is relative if its
value is una¤ected by scaling all incomes and the poverty line by the
same factor. We �rst introduce the sets of poverty measures and then
the dominance functions we need.
With the notation �(i) for the i-th order derivative of �(x; z) with

respect to x, de�ne �1 as the set of additive poverty measures such
that �(1)(x; z) 6 0 for x 2 (0; z]. Let �2 denote the set of poverty
measures contained in �1 such that �(2)(x; z) > 0 for x 2 (0; z] and
�(z; z) = 0. Further, for a given integer s > 3, de�ne �s recursively
as the set of additive poverty measures contained in �s�1 with �(x; z)
satisfying (�1)s�(s)(x; z) > 0 for x 2 (0; z] and �(s�2)(z; z) = 0. Also,

1The requirement on the support of the distribution functions to be in [0;1)
could be removed. The statements of Proposition 1 and Theorem 1 below would
then have to be adapted accordingly and some conditions on the left-hand tail of F
would be needed. Since the requirement that income be positive is not unnatural,
this does not seem to be a generalization worth pursuing from the econometric point
of view.
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let �sA and �
s
R denote the sets of absolute and relative poverty measures

contained in �s respectively.
We now introduce the functions involved in the dominance compar-

isons. De�ne the stochastic dominance functions Ds(x;F ) recursively in
the usual way as D1(x;F ) := F (x) and Ds(x;F ) :=

R
y6xDs�1(y;F )dy

for an integer s > 2. For our purposes, it is convenient also to introduce
the functions

As(x; z;F ) := Ds(z � x;F ) and Rs(x; z;F ) :=
Ds(xz;F )

zs�1
:

We are now in the position to state two basic results for which infer-
ential methods will be developed in the present paper. The �rst result
(cf. statement (2) below) concerns absolute poverty measures and the
second one (cf. statement (3) below) concerns relative poverty measures
(e.g. Davidson and Duclos, 2000).

Proposition 1 Let F and G be distribution functions with supports in
[0;1). Then we have that P (zG � x;G) > P (zF � x;F ) for all x > 0
and for all P 2 �sA if and only if

As(x; zG;G) > As(x; zF ;F ) for all x > 0: (2)

Furthermore, we have that P (xzG;G) > P (xzF ;F ) for all x 2 [0; 1] and
for all P 2 �sR if and only if

Rs(x; zG;G) > Rs(x; zF ;F ) for all x 2 [0; 1]: (3)

Note that if the poverty lines zF and zG are equal, statements (2)
and (3) are identical. We would then not have to distinguish between
absolute and relative poverty measures and the statements (2) and (3)
would hold if and only if P (x;G) > P (x;F ) for all P 2 �s and for all
x 2 [0; z] with z denoting the common poverty line.
If the income distributions F and G are unknown, formal statistical

tests are needed to check statements (2) and (3). Developing testing
procedures for stochastic dominance has proved to be quite challenging.
Much of the literature deals with the problem of testing whether one
dominance function is above the other at a �nite number of abscissae.
See Davidson and Duclos (2000) and references therein. In this approach,
however, the test results depend on the choice of the x-values at which
the curves are compared. Moreover, the tests are possibly inconsistent.
Recently, Kolmogorov-Smirnov-type testing procedures have been

proposed to test the hypothesis that Ds(x;G) > Ds(x;F ) for all x
2 I � (�1;1) (Barrett and Donald, 2003; Horváth, Kokoszka and
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Zitikis, 2006; Linton, Maasoumi and Whang, 2005). Since these testing
procedures do not require the researcher to choose grid points at which
to check dominance, they do not su¤er from the drawbacks which the
former procedures are inextricably bound up with. The present paper
develops procedures in much the same spirit to test whether statements
(2) and (3) hold. Since in practice poverty lines are often estimated
empirically, we allow the poverty lines to be random. This considerably
complicates statistical inference as demonstrated previously by David-
son and Duclos (2000) and Zheng (2001). We deal with these issues in
the present paper, covering also with a uni�ed approach the cases when
samples are independent and paired.
The large sample inferential theory is developed in the next section.

Section 3 presents a bootstrap procedure to estimate critical values for
our test statistic and Section 4 concludes.

2 Main results

We are interested in testing whether statements (2) and (3) hold. To
economize on space, we introduce the generic notation K that would be
A in the case of absolute poverty and R in the case of relative poverty.
Note that the intervals of the x-values in statements (2) and (3) are
di¤erent, that is,

IA := [0;1) and IR := [0; 1]:

With the above notation, both statements (2) and (3) can be be concisely
stated as only one:

Ks(x; zG;G) > Ks(x; zF ;F ) for all x 2 IK : (4)

Let statement (4) be our null hypothesis, H0, and let the alternative,
H1, be the complement to H0. With the help of the quantity

SKF�G := sup
x2IK

(Ks(x; zF ;F )�Ks(x; zG;G));

we can reformulate the above de�ned hypotheses H0 and H1 as

H0 : S
K
F�G 6 0 vs. H1 : SKF�G > 0:

Our next task is to construct a test statistic and then develop an appro-
priate large sample based inferential theory.
Let X1; : : : ; Xn be independent copies of the random variable X with

distribution function F . Furthermore, let Y1; : : : ; Ym be independent
copies of the random variable Y with distribution function G. The two
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samples may be independent or dependent. In the former case, the
random variables Xi (i = 1; ::; n) are independent of all Yi�s. In the
latter case, n = m and the pairs (X1; Y1); : : : ; (Xn; Yn) are independent
bivariate vectors from the joint distribution H(x; y) of X and Y .
The empirical distribution functions corresponding to the X�s and

Y �s are de�ned in the usual way as, respectively,

bF (x) := 1

n

nX
i

1(Xi 6 x) and bG(y) := 1

m

mX
i

1(Yi 6 y);

where 1(�) denotes the indicator function. Assume now that there exists
a number � 2 (0; 1) such that n=(n+m)! � when both n and m tend
to in�nity and let �)�stand for �weakly converges to�. Then we have
the following statement (that introduces two new notations, F and G):r

nm

n+m

 bF � FbG�G
!
)
�p

1� � B1 � Fp
� B2 �G

�
=:

�
F
G

�
(5)

with B1 and B2 denoting Brownian bridge processes. Obviously, the
two coordinates F and G of the bivariate limiting process on the right-
hand side of (5) are independent if the two samples are independent. If,
however, the two samples are paired, then � = 1=2 and the covariance
function of the bivariate limiting process on the right-hand side of (5) is
given by

E

��
F(x1)
G(x1)

��
F(x2)
G(x2)

�0�
=
1

2

�
min(F (x1); F (x2))� F (x1)F (x2) H(x1; x2)� F (x1)G(x2)

H(x2; x1)� F (x2)G(x1) min(G(x1); G(x2))�G(x1)G(x2)

�
:

In many practical applications, the poverty line is a functional of the
(unknown) distribution function and so has to be estimated. Denote the
estimator of zF , the poverty line associated with the distribution F , as
ẑF and assume that the following representation holds:

bzF � zF = Z �F (x)d( bF (x)� F (x)) + oP(n�1=2); (6)

where �F is a function such that the integral
R
�2F (x)dF (x) is �nite. An

analogous assumption is made for zG, the poverty line associated with
the distribution function G (with the notation ẑG and �G).
We now present a few examples of poverty lines. First we note that,

in principle, the poverty line zF might be known, and thus its �estimator�bzF can obviously be chosen to be zF , in which case
�F (x) = 0:
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The �rst nontrivial example is when zF is set to a fraction k of the mean
of F , in which case we have bzF = k �X (with �X the sample mean of the
X�s) and thus the representation (6) holds with

�F (x) = kx:

As a second example, consider a poverty line that is de�ned as a frac-
tion k of the pth quantile of F , i.e. zF = kF�1(p), with F�1 the left-
continuous inverse of F and p 2 (0; 1). In this case, bzF is a fraction k of
the empirical quantile and the Bahadur representation (cf., e.g., Shao,
1999, p. 307) gives (6) with

�F (x) = �
k

F 0(F�1(p))
1(x 6 F�1(p));

where F 0 is assumed to exist and to be strictly positive at the point
F�1(p).
We are now ready to introduce the test statistic for H0 vs. H1:

bSKF�G :=r nm

n+m
sup
x2IK

�
Ks(x; bzF ; bF )�Ks(x; bzG; bG)� :

The following theorem provides a random variable (for K = A and
K = R) which dominates the limiting distribution of the test statistic
under the null hypothesis, and thus determines the (conservative) critical
values of the test.

Theorem 1 Let F and G be distribution functions with supports in
[0;1). If the poverty lines zF and zG are unknown, assume, in addition
to representation (6) for both zF and zG, that the functions d

dz
Ks(x; z;F )

��
z=zF

and d
dz
Ks(x; z;G)

��
z=zG

are continuous in x at every point in IK. Then,
under H0 we have that, for every c > 0,

lim sup
n;m!1

P(bSKF�G > c) 6 P(�KF�G > c) (7)

when n and m tend to in�nity in such a way that n=(n+m)! � 2 (0; 1),
and where

�KF�G := sup
x2IK

�KF�G(x)

with the Gaussian process

�KF�G(x) := Ks(x; zF ;F) +
d

dz
Ks(x; z;F )

���
z=zF

Z
�F (y)dF(y)

� Ks(x; zG;G)�
d

dz
Ks(x; z;G)

���
z=zG

Z
�G(y)dG(y):
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Furthermore, under H1, the test statistic bSKF�G converges in probability
to in�nity, that is,

lim
n;m!1

P(bSKF�G > c) = 1
for every c > 0.

The proof of Theorem 1 is given in the Appendix. We now discuss
the theorem and the assumptions imposed. The empirical estimation of
the quantiles of the distribution of �KF�G is discussed in the next section.
We start with a note on the lim sup on the left-hand side of (7). In

fact, it can be replaced by lim since the limit, as we shall show in a
moment, does exist. Indeed, a little additional analysis of the proof of
Theorem 1 reveals that under H0 the test statistic bSKF�G converges in
distribution to the random variable

�KF�G(E
K) := sup

x2EK
�KF�G(x)

if the set EK := fx 2 IK : Ks(x; zG;G) = Ks(x; zF ;F )g is non-empty,
and converges to �1 if this set is empty. Since EK � IK and �KF�G
equals �KF�G(I

K), we have the inequality �KF�G > �KF�G(E
K). This

clari�es our earlier note that the quantiles of �KF�G provide conservative
critical values.
We have already noted that the poverty lines zF and zG may in

principle be known. In this case, the continuity assumption regarding
d
dz
Ks(x; z;F )

��
z=zF

and d
dz
Ks(x; z;G)

��
z=zG

is unnecessary and the theo-
rem holds with �F (x) = 0 and �G(x) = 0.
Suppose now that the poverty line zF depends on the (unknown)

population distribution function F and is therefore estimated using an
estimator bzF that satis�es the representation (6). Then Theorem 1 re-
quires that the function

�s(x) :=
d

dz
Ks(x; z;F )

���
z=zF

be continuous at every point x of the interval IK . For practical ap-
plicability of the theorem, we reformulate the continuity assumption on
�s(x) in terms of the distribution F . From the de�nition of the functions
Ks(x; z;F ), note that �s(x) is continuous at every point x of the interval
IK if the function dDs(x;F )=dx is continuous on (�1; zF + �) for some
� > 0. Since for s > 3 the function dDs(x;F )=dx = Ds�1(x;F ) is con-
tinuous for every F , the requirement that �s(x) be continuous is always
satis�ed for s > 3. For s = 2, we have Ds�1(x;F ) = F (x), and so the
continuity assumption is implied by the continuity of F on (�1; zF +�).
For s = 1, the continuity assumption is implied by the continuity of F 0

on (�1; zF + �).
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3 Estimating critical values

For the result in Theorem 1 to be of practical use, critical values are
needed. Note, however, that the distribution of the random variable
�KF�G depends on the (unknown) joint probability distribution of X and
Y . Hence, we have to resort to simulation techniques to estimate the
quantiles of the distribution of �KF�G. Here we propose a bootstrap tech-
nique. For this and other simulation methods, see Barrett and Donald
(2003), and Linton, Maasoumi and Whang (2005).
If the two samples, that is, the X�s and Y �s are independent, then

we let X�
1 ; : : : ; X

�
n be a simple random sample of size n from bF , and let

Y �1 ; : : : ; Y
�
m be a simple random sample of size m from bG. Denote the

empirical distribution functions of the bootstrap samples as bF � and bG�,
respectively.
If, however, the samples are dependent, then we draw a simple ran-

dom sample, say (X�
1 ; Y

�
1 ); : : : ; (X

�
n; Y

�
n ) of size n from the joint empir-

ical distribution function bH of the original pairs (X1; Y1); : : : ; (Xn; Yn).
Denote the empirical distribution functions of the �rst and second coor-
dinates of the above bootstrap samples as bF � and bG�, respectively. In
both the independent and the paired case discussed above, denote the
bootstrap version of the empirical poverty line ẑF as bz�F and likewise bz�G
for ẑG.
With these notations, de�ne the statistic

BKF�G :=

r
nm

n+m
sup
x2IK

�
Ks(x; bz�F ; bF �)�Ks(x; bzF ; bF )

�Ks(x; bz�G; bG�) +Ks(x; bzG; bG)�:
Since, when both n and m tend to in�nity,r

nm

n+m

 bF � � bFbG� � bG
!
)
�
F
G

�
;

arguments similar to the ones used in the proof of Theorem 1 can be
used to show that BKF�G converges in distribution to �

K
F�G. In view of

this, the quantiles of the distribution of BKF�G will give asymptotically
correct critical values for our testing problem. More formally, let P� be
the probability P conditioned on the random variables X1; : : : ; Xn and
Y1; : : : ; Ym, and let H�(c) := P�fBKF�G 6 cg. The distribution function
H�(c) is an empirical estimator of the theoretical distribution function
H(c) := P(�KF�G 6 c). Hence,

c�� := inffc > 0 : H�(c) > 1� �g
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is an empirical estimator of c� := inffc > 0 : H(c) > 1 � �g, which
is the critical value provided by Theorem 1. Of course, for the desired
result c�� !P c� to hold, we need the continuity of the distribution func-
tion H(c). This is implied by results of Tsirel�son (1975). Speci�cally,
Tsirel�son shows that suprema of Gaussian processes have continuous
distribution functions except in pathological cases such as degenerate
processes. In summary, under the null hypothesis H0 we have that

lim sup
n;m!1

P(bSKF�G > c��) 6 �;
and under the alternative H1 we have that P(bSKF�G > c��) ! 1. The
asymptotic p-value 1 � H(bSKF�G) (or empirical size) of the test can be
approximated as

P�fBKF�G > bSKF�Gg:
4 Conclusions

Dominance criteria are powerful tools to compare income distributions in
terms of welfare, inequality or poverty. In this paper, we focus on poverty
dominance. Dominance criteria corresponding to both absolute and rel-
ative poverty measures are considered. A consistent test is proposed
to test the null of dominance against the alternative of nondominance.
We present a simple to execute bootstrap procedure to estimate critical
values for the test. Since in practice poverty lines are often functionals
of the population distribution functions and samples may be dependent,
our testing theory is developed to accommodate these situations.
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Appendix

Proof of Theorem 1. Under H0, the function Ks(x; zF ;F ) should
not exceed Ks(x; zG;G) for any x 2 IK . Hence, the di¤erence between
the functions must be non-positive, and so we have the boundr

nm

n+m
sup
x2IK

�
Ks(x; bzF ; bF )�Ks(x; bzG; bG)�

6
r

nm

n+m
sup
x2IK

�
Ks(x; bzF ; bF )�Ks(x; zF ;F )�Ks(x; bzG; bG) +Ks(x; zG;G)

�
:

(8)

To prove Theorem 1, we have to show that the right-hand side of (8)
converges in distribution to �KF�G. This we do with the help of the
following weak convergence result that we shall prove below:r

nm

n+m

�
Ks( � ; bzF ; bF )�Ks( � ; zF ;F )

�Ks( � ; bzG; bG) +Ks( � ; zG;G)
�
) �KF�G: (9)

Note that the supremum of the limiting process in (9) with respect to
x 2 IK is exactly the random variable �KF�G de�ned in the formulation
of the theorem.
We start the proof of (9) by writing

Ks(x; bzF ; bF )�Ks(x; zF ;F ) =
�
Ks(x; bzF ;F )�Ks(x; zF ;F )

�
+Ks(x; zF ; bF � F )
+
�
Ks(x; bzF ; bF � F )�Ks(x; zF ; bF � F )�;

(10)
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where we have used the fact that the function Ks(x; zF ;F ) is linear in
the third argument.
For the �rst term, Ks(x; bzF ;F )�Ks(x; zF ;F ), on the right-hand side

of (10), we can write

Ks(x; bzF ;F )�Ks(x; zF ;F )=
d

dz
Ks(x; z;F )

����
z=zF

(bzF � zF ) +R1;n(x)
=
d

dz
Ks(x; z;F )

����
z=zF

Z
�F (x)d[ bF (x)� F (x)] +R2;n(x);

where the two remainder termsR1;n(x) andR2;n(x) are uniformly oP(n�1=2).
Indeed, the aforementioned order of R1;n(x) follows from the continuity
of d

dz
Ks(x; z;F )

��
z=zF

. For the second equality and thus the claimed
order of R2;n(x), we have used (6).
To show that the third term, Ks(x; bzF ; bF � F ) � Ks(x; zF ; bF � F ),

on the right-hand side of (10) is asymptotically negligible, we consider
the two cases K = A and K = R separately.
When K = A, we deal with the process Ds(bzF �x; bF �F )�Ds(zF �

x; bF � F ) indexed by x 2 IA. Since pn(Ds(x � z; bF � F )) converges
weakly to the x-indexed Gaussian process Ds(x� z;B � F ), we have by
the stochastic equicontinuity of the limiting process and by the fact that
jbzF � zF j = oP(1) that

sup
x2IA

���Ds(bzF � x; bF � F )�Ds(zF � x; bF � F )��� = oP(n�1=2):
This is the desired result.
When K = R, we rewrite Rs(x; bzF ; bF �F )�Rs(x; zF ; bF �F ) as the

sum

1

[zF ]
s�1

�
Ds(xbzF ; bF � F )�Ds(xzF ; bF � F )�

+Ds(xbzF ; bF � F )� 1

[bzF ]s�1 � 1

[zF ]
s�1

�
: (11)

Again, since
p
n(Ds(zx; bF � F )) converges weakly to the x-indexed

Gaussian process Ds(zx;B � F ), we have by the stochastic equiconti-
nuity of the limiting process and by the fact that jbzF � zF j = oP(1) that
the supremum over all x 2 IR of the absolute value of the �rst term in
(11) is oP(n�1=2). As to the supremum over all x 2 IR of the absolute
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value of the second term in (11), we have that it does not exceed

c jbzF � zF j sup
x2IR

Ds(xbzF ; bF � F ) + oP(n�1=2)
= OP(n

�1=2)OP(n
�1=2) + oP(n

�1=2)

= oP(n
�1=2):

Combining the above results in the case of F , and since similar results
hold for the distribution function G, we have

Ks(x; bzF ; bF )�Ks(x; zF ;F )�Ks(x; bzG; bG) +Ks(x; zG;G)

= Ks(x; zF ; bF � F ) + d

dz
Ks(x; z;F )

���
z=zF

Z
�F (x)d

� bF (x)� F (x)�
�Ks(x; zG; bG�G)� d

dz
Ks(x; z;G)

���
z=zG

Z
�G(x)d

� bG(x)�G(x)�
+R3;n(x);

where the remainder term R3;n(x) is uniformly oP(n�1=2). Now, multiply
the above equation by

p
nm=(n+m) and use (5) to obtain the earlier

made claim in (9).
To complete the proof, we have to show that under the alternative

H1, the test statistic bSKF�G converges in probability to in�nity. Note that,
under H1, there exists x� 2 IK such that Ks(x

�; zF ;F )�Ks(x
�; zG;G) >

0. We can write the inequality

bSKF�G >r nm

n+m

�
Ks(x

�; bzF ; bF )�Ks(x
�; bzG; bG)� .

Since the right-hand side converges in probability to in�nity, so does the
left-hand side.

11




