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Abstract

This paper explores pitfalls in regression-based inequality decompositions. A simple
procedure is developed for rectifying these pitfalls. The procedure does not impose any
restrictions on the underlying regression model and it can be applied to any inequality
measure(s). Once combined with conventional decomposition methods or the Shapley
value approach of Shorrocks (1999), what is being proposed becomes a most general and
powerful framework for regression-based inequality decomposition. Empirical examples
are provided to demonstrate the use of the procedure, and to contrast our results with those
based on recent developments of Fields and Yoo (2000) and Morduch and Sicular (2002).
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1 Introduction

For years, economists have attempted to develop the regression-based approach to
inequality decomposition. Pioneers in this area include Oaxaca (1973) and Blinder (1973).
Juhn, Murphy and Pierce (1993) extended the earlier work to permit decomposition of
between-group difference in the full distribution rather than in the mean of income only, as
in Oaxaca and Blinder. Bourguignon, Fournier and Gurgran (2001) relaxed the
requirement of a linear income-generating function of Juhn et al. Clearly, these efforts
were devoted to explain between-group (e.g., male versus female) differences in income
distribution, not to quantify contributions of many individual determinants to total
inequality.

The semiparametric and nonparametric techniques, respectively proposed by DiNardo,
Fortin and Lemiux (1996) and Deaton (1997), sought to model and compare the whole
distribution of income in terms of the density function. However, as is typical of many
non- or semiparametric methods, they often result in less conclusive findings than
economists or policymakers can hope for.

In two most recent papers, Fields and Yoo (2000) and Morduch and Sicular (2002)
developed new frameworks for inequality decomposition based wholly and directly on
conventional regression equations. A particular advantage of the regression-based
decomposition is that it enables identification as well as quantification of root causes or
determinants of inequality. The number of determinants can be arbitrary; even their proxies
could be used. This is not possible with any of the conventional decomposition methods.
Owing to its vast flexibility and accommodating characteristics, the regression-based
approach is expected to attract much attention and gain popularity.

However, the current state-of-art in regression-based inequality decomposition has a
number of limitations:

(a) Severe restrictions are imposed on the functional forms of regression models that can
be used. Fields and Yoo (2000), hereafter referred to as FY, requires semilog linear
income-generating function. On the other hand, Morduch and Sicular (2002), hereafter
referred to as MS, requires a standard linear specification.

(b) Strigent restrictions are also imposed on how inequality can be measured. In FY or
Fields and Yoo (2000), inequality must be measured over logarithm of income. Under
this restriction, they measure inequality by the squared coefficient of variation (CV).1
The CV measure is known to violate the crucial principle of transfer. Conversely, only
additively decomposable measures of inequality can be used in MS or Morduch and
Sicular (2002). A careful reading of the paper indicates that their contribution amounts

1 1t seems that they overclaimed or exagerated the generality of their framework. For example, it is unclear
how one could apply the Atkinson measure or Theil’s second measure in their framework. Certainly, if one
uses the Gini index, the contribution of the residual term is bound to be 0, as shown later in this paper, even if
inequality is measured over logarithm of income. This contradicts their equation (4), which always allocates
1-R? to the residual term.



to proposing a decomposition of Theil’s first measure of inequality only. Use of other
measures is either not possible or problematic (e.g., CV). Particularly disappointing is
that under their framework, the most popular Gini coefficient violates their property of
uniform additions (p. 98).

(c) Finally and most importantly, there exist fundamental flaws or pitfalls in the current
approaches, which, so far, have been either neglected or considered not solvable. These
pitfalls, if untreated, will almost always crop up in the regression-based approach to
inequality decomposition and lead to misleading results.

This paper is written to accomplish three objectives. First, it represents an early attempt to
expose the pitfalls in detail so theoretical and applied economists are made aware of these
problems. Second, relying on the most natural rule of decomposition of Shorrocks (1999),
this paper proposes a simple yet powerful procedure for regression-based inequality
decomposition, which is free from the pitfalls and limitations discussed above. Third, using
a set of data from China, this paper demonstrates the use of the proposed procedure and the
results are contrasted with those based on FY and MS.

2 Existing pitfalls and a solution procedure

Suppose an estimated regression equation is obtained as

Y=FX)+e=a+Y*X) +e (1)

where Y = income or its transformation such as Ln(income) and X = income determinants
or their transformations. Other notations are self-evident. It is important to note that the
above model specification is more general than all earlier studies. In fact, our proposition
in this paper allows for any form of F(X)—being linear or highly nonlinear. Both original
income and logarithm of income or other transformations of income can be used as the
dependent variable.

While it is seldom, though possible, to encounter a constant as a source of income in
empirical analysis of income distribution, the presence of a constant is almost a rule rather
than an exception in a regression equation. Such a special source is factually known to
lower (raise) total inequality if it is positive (negative). For example, a headcount tax
(negative constant income) increases inequality while a headcount subsidy (positive
constant income) decreases inequality. However, as shown below, existing studies either
avoided confronting this problem or handled it incorrectly.

A more serious and definitely unavoidable problem arises from the presence of the residual
term €, which is assumed away in conventional decompositions. Although the disturbance
term or its estimated counterpart is a white noise by definition, which means that it does
not affect the mean of the dependent variable in (1) nor does it affect the shape of the
empirical Lorenze curve, its presence or absence does result in different income density
functions thus determines income distribution or measured inequality. Therefore, it is
necessary to disentangle and identify the contribution of the residual term. Again, existing
studies either avoided confronting this problem or handled it incorrectly.



The above problems must be addressed. Otherwise, the powerful regression-based
approach, alternative or complementary to the conventional methodologies, will give rise
to misleading results. Consequently, the potential and real advantage of this approach will
be undermined and further advance in this area will be hampered. In passing, we note that
the contribution of the constant term is ignored in FY while MS did not take up these
issues properly. At least, prior works have not dealt with these problems according to the
most natural rule of decomposition of Shorrocks (1999) or equivalently the before-after
approach recommended by Cancian and Reed (1998).

In equation (1), the constant is deliberately separated out from X and the remaining
deterministic part of (1) is grouped as Y*(X) or simply Y*. This is because we mainly focus
on the constant and residual terms in this paper. We are not particularly concerned about
income flows from specific factors, which are less problematic and whose contributions
can be handled using traditional techniques or the Shapley value framework of Shorrocks
(1999).

Let us start with the residual term by re-writing (1) as
Y=Y+e (2)

where ¥ =a + Y*(X) represents the deterministic part of, or the predicted value of Y, from
a linear or nonlinear function (0 could be 0). The pitfalls can best be demonstrated by
using the Gini index as an example measure of inequality. Let C denote the concentration
index, applying the Gini index operator G to both sides of (2) produces:

G(Y)=C(Y)+0 (3)

Decomposition (3) implies that the residual or disturbance term is irrelevant or plays no
role at all in affecting measured income inequality. All contributions are from the
deterministic part of (1). This, of course, is not correct. In addition to early discussions, one

should note that G(Y) # G( Y ) unless all e = 0. That is, presence or absence of the residual
term does alter the measured inequality in any regression-based frameworks. Given (3), it
is puzzling to note the large contribution of the residual term and the near zero but

significant contribution of the constant term to the measured Gini index in MS
(Table 2:103).

One way to treat the residual term is to discard it altogether. After all, the residuals are not
explainable by the structural income-generating function. If this is the case, one could

focus on Y and obtain further decomposition results. This, however, is not recommended.
Apart from earlier arguments against such a practice, the residual term, to some extent, is
sometimes viewed as representing factors or determinants other than those included in the
regression model. One may not be able to analyse the contribution of non-included
determinants. But, ignoring e is certainly unwise as it does contain useful information. At
the very least, its contribution, once identified, can inform policymakers and others as to
how much included factors can explain the overall inequality. A study which leaves 70 or
80 percent of inequality to the residual term, as in MS, could be deemed useless or has
very limited value. This is so despite the fact that there may exist negative and positive
contributions from included factors so a large contribution from the residual term is
probable.



To reiterate, ignoring the residual term means throwing away useful information on non-
included determinants of income or income distribution. Such practice also causes
distortions in the decomposition results, as shown in the empirical part of this paper. It is
reasonable to expect that any decomposition framework in a regression-based context must
come up with a relatively high explainable proportion. A benchmark might be that the net
percentage due to included factors Y* and the constant a0 must be no less than the
contribution by the residual term.

To account for the contribution of e, we follow Shorrocks (1999, equation 2.4) by
removing e from (2) and obtain

I(Yle=0)=1(Y) (4.1)

where I stands for an inequality measure. The contribution of e to I(Y) is then given by
COe:

COe=1(Y)-1(Y) (4.2)

The difference between I(Y) and I(}} ) is subtle and important. For example, if the Gini
index is used, I(Y) = G(Y) = C(f’ ) must be calculated with Y as the ranking variable, while
I(Y ) = G(f’ ) must be calculated with Y as the ranking variable. This is the case despite
the fact that the expected values of Y and Y are identical. The rankings by Y and Y would
be equivalent if and only if there is a good enough fit of the income-generating function.

Viewing from this perspective, decomposition (4) makes intuitive as well as theoretical
sense. Note that COe — 0 as e — 0 from all directions.

Having identified the contribution of the residual term, the next task is to disentangle

the contribution to I( Y ) made by the constant term. Of course, if no constant exists in the
underlying income-generating function, this issue becomes irrelevant. Provided the
presence of a constant, we can then write

Y =a+Y* (5)

As before, to demonstrate our points, we use the Gini coefficient as an example measure of
inequality and apply it to both sides of (5) to obtain

G(Y)=0a/E(Y) C(a) + E(Y*)/E(Y ) C(Y*) =0 + COy» (6)

If one allocates contributions according to (6), the constant term plays no role at all. This
problem always occurs to the framework of FY no matter what measures of inequality are
used. It also occurs to MS, if the Gini index or CV/variance is used as measures of
inequality.

MS seemed to place the blame on particular inequality measures for this problem. This is
unjustified because it is their analytical framework not the inequality measures that causes
this problem. To elaborate, note that the addition of a positive (or negative) constant causes
a reduction (increase) in the contribution of included factors, denoted by COy+ in (6), as

E(f’ ) becomes smaller (larger) than otherwise. In other words, the impact of a did not



disappear; it is being distributed over or absorbed by other terms in Y . If one can ‘squeeze
out’ the impact entangled in the other source(s), it is natural to attribute the impact to the
constant term. Unfortunately, no early efforts were devoted to ‘squeeze out’ this impact.
Applying the most natural rule of Shorrocks again, we have

I(Y o =0)=1(Y*) (7.1)
Thus, the contribution of the constant term COq 1S

COq=1(Y) - I(Y*). (7.2)

It is not difficult to show that COy < 0 if a > 0, and vice versa. Needless to say, when
a=0,Y =Y*and COq=0.

In summary, I(Y) can be decomposed into COe, COy and COvy+ (which represents
contributions by various non-constant Xs). The percentage contributions are

PCe =100 [I(Y) — I(Y)]J/I(Y) (8)
PCq = 100 [I(Y) — [(Y*))/I(Y) )
PCy+ = 100 I(Y*)/I(Y) (10)

It is straightforward to see that the decompositions given by (8)—(10) always add to
100 percent.

What is being proposed is very general as it is independent of inequality measures to be
used. The procedure, essentially embedded in equations (4) and (7), is also independent of
functional specifications of F(X). Furthermore, any arbitrary transformation of the target
variable is allowed as long as one is prepared to measure inequality over the transformed
values, as in FY. In many cases, even if the dependent variable is transformed, inequality
can still be measured over the original target variable by our procedure. In those cases, one
first solves the estimated equation for the original variable (e.g., taking exponentials in
case of logarithm transformations) and then applies the proposed procedure. This point will
be demonstrated in the next section where empirical applications are carried out.

Two points deserve special mention. Further decomposition of I(Y*) into contributions of
individual determinants Xs can be undertaken using conventional methods when possible.
If not, the Shapley value approach of Shorrocks (1999) can always be employed. Also,
despite the fact that we have referred to income as the target variable most of the time, our
results apply to any social, development or economic variable(s) under consideration.

3 Empirical examples

For demonstration purposes, we estimate two income-generating functions for rural China
and then apply the proposed decomposition procedure. They are the standard linear
function of MS, and the semilog of FY. These two forms are chosen partly to facilitate
comparisons of results based on our procedure and those of MS and FY. With the semilog
form, inequality is initially measured over logarithm of income and then measured over



original income, after taking exponentials of the estimated equation. This could be quite
interesting since the resulting income-generating function is no longer a linear function. As
a consequence, neither MS nor FS is applicable. The inequality measures to be considered
include the most popular Gini coefficient, the conventional squared coefficient of variation
(CV/Var), Theil’s first measure (Theil-T) and Theil’s second measure (Theil-L), and
Atkinson’s measure where € is set to 0. The two Theil’s measures belong to the generalised
entropy family.

Aggregate data at the region level are used, covering 30 regions and the years 1992-5.
Income observations are constructed as in Wan (1997, 2001). Other data are taken from
China Statistical Yearbooks and China Agricultural Yearbooks (NBS, various years). To
account for heterogeneity across regions, the panel data model of Kmenta (1986) is used
(see Wan and Cheng 2001 for more details). This is an alternative to the random and fixed
effects models. In passing, it is noted that regional dummy variables could be used to
facilitate within- and between-group decomposition in the context of regression-based
approach, a topic beyond the scope of this paper.

Case I: Linear income-generating function

The estimated linear equation is (variables are expressed on a per capita basis wherever
appropriate)

Income = —130.61 + 49.12 HH + 0.56 K + 53.83 ED — 2.13 DEP — 13.63 Land
(-1.72) (3.37) (9.12)  (9.04) (=3.51)  (-5.24)

+ 14.11 TVE + year dummies + residual
(25.27)

Buse-R* = 0.92 Sample size =120 SSE =110.38

In the above and below equations, t-ratios are in parentheses, HH = household size,
K = per capita capital input, ED = average years of schooling, DEP = dependency ratio,
TVE = proportion of labour force employed in town and village enterprises. Other
variables and terms are self-explanatory. Since income is measured on a per capita basis,
and dependency ratio is included, no labour input can enter the equation. The estimation
results are satisfactory in terms of signs and statistical properties. Buse-R? is a goodness-
of-fit measure when the generalised least squares estimation method is used (Buse 1973). It
differs from the usual R” thus the residual contribution to total inequality may not equal
Buse-R?, as in FY and MS, when CV/Var is applied to the estimated models in this paper.

The negative coefficient of the land variable needs some clarifications. In China, regions
with more land are usually more backward and heavily involved in farming while land
scarce regions (e.g., the Pearl Delta, the Yangtze Delta) are more affluent. Farming has
been a loss-making business in China since early 1990s; reports are abundant on farmers
deserting land and on cases where rural households (versus urban residents by way of
household registration) are administratively forced to cultivate. Land in the 1990s can be
viewed as a proxy for tax contributions. As a consequence, the negative coefficient
estimate is consistent with normal expectations.



The decomposition results are presented in Table 1 (recall that we focus on the constant
and residual terms only in this paper). For comparison purpose, we also include
decomposition results by applying the MS and FY methods to our model. We do not
consider the alternative CV of MS, because its theoretical property is unknown and it had
never been used before MS.

Table 1: Contributions to income inequality: linear function (%)

Inequality FY MS This Paper

Index Residual Constant Other  Residual Constant Other  Residual Constant Other
Gini X X X X X 100.0 16.69 18.06 65.25
CV/Var X X X 19.10 X 80.90 10.28 19.45 70.27
Theil-T X X X 41.61 26.09 32.30 22.61 28.85 48.54
Theil-L X X X X X X 25.66 27.43 46.91
Atkinson X X X X X X 25.09 27.24 47.67

Source: Author’s calculations.

Note: X = not applicable.

A number of findings emerging from Table 1 are worth noting. First, our procedure can
always identify contributions by the residual term as well as the constant term no matter
what inequality measure is employed. In contrast, the FY method cannot be applied at all.
The MS framework can only produce results for 6 out of a total of 15 cells in Table 1.
Second, the residual contributions across different measures are within a comprehensible
range under our decomposition procedure. However, if MS is followed, the residual
contribution associated with the Theil-T measure is rather large, larger than any other
components. Thirdly, the different percentage contributions given by different inequality
measures essentially depend on the sensitivities of the measures to income transfers and to
random shocks to the target variable. Recall that CV/Var violates the principle of transfer.
This is why the contribution of the constant term is relatively small when it is used as a
measure of inequality. It appears that the Gini is relatively insensitive to uniform additions
or subtractions as well. With respect to the residual term or random shocks, both the
CV/Var and the Gini seem less sensitive than the other measures. Finally, the
decomposition results are similar when the Atkinson and GE measures are used. This is not
surprising as the Atkinson measures are equivalent to GE subject to monotonic
transformations (Shorrocks and Slottje 2002).

Table 1 also makes it clear that, except the Theil-T, MS cannot be meaningfully applied. In
particular, if their approach is applied to the most popular and a best measure of
inequality—the Gini index (see Shorrocks and Slottje 2002, Fields 2001, and Dagnum
1990)—100 percent of inequality would always be assigned to the included non-constant
variables. The constant, the omitted factors and the residual term (true random shocks) do
not contribute to inequality at all. In fact, even if the estimated regression model has
infinitely small explanatory power, these conclusions stand—a result too good to be true.
On the other hand, the framework of FY cannot be used at all as they require a strictly
semilog linear form of income-generating function.



Case 2: Semilog income-generating function with inequality measured over
logarithm of income

Turning to the semilog model, the following estimated equation is obtained:

Log (Income) = 4.52 + 0.15 HH + 0.002 K + 0.15 ED — 0.007 DEP — 0.04 Land
(25.55) (4.75)  (11.73) (11.09) (-5.42)  (-7.62)

+0.02 TVE + year dummies + residual
(29.57)

Buse-R* = 0.97 Sample size =120 SSE=111.14

As with the linear model, the estimation results seem satisfactory in terms of signs and
magnitudes of the parameter estimates. The Buse-R” is higher than that from the linear
model although they are not compatible. A particular point to note is that the constant term
1s now positive, thus its contribution to total inequality, if appropriately measured, should
be negative. Following FY, inequality is measured over the logarithm of income. Under
this circumstance, the MS approach could be applicable depending on what inequality
measures to be used. The decomposition results are tabulated in Table 2.

A most striking feature of Table 2 is that there are very large negative and large positive
values. This is due to the fact that the estimate of the constant term is positive and more
importantly it is large relative to the values of the dependent variable. The mean of the
dependent variable is 5.98, but the constant is 4.52, amounting to over 75 percent of the
former. Therefore, the contribution of the constant term, which is bound to be negative,
must be quite substantial. After dividing by a small value of total inequality (when
inequality is measured over logarithm of income, its value becomes much smaller), the
resulting percentage value is expected to be quite large. In fact, when original income is
used, the Gini index is 0.20, but when the logarithm of income is used, the total inequality
as measured by the Gini index is only 0.03. Even if the contribution of the constant were
—0.1, the percentage contribution would amount to —333 percent. As the CV and Gini index
are less sensitive to uniform additions or subtractions, other measures are likely to produce
even larger values, a phenomena apparent in Table 2.

Table 2: Contributions to inequality of log (income): semilog function (%)

Inequality FY MS This Paper

Index Residual Constant Other Residual Constant Other Residual Constant Other

Gini X X X X X 100 21.38 -245.05 323.67
CV/Var 25.75 X 74.25 25.75 X 74.25 15.84 -262.30 346.46
Theil-T X X X 5210 -75.16 122.93 29.78 -1067.52 1137.74
Theil-L X X X X X X 30.37 -1026.65 1096.28
Atkinson X X X X X X 30.36 -1018.20 1087.84

Source: Author’s calculations.

Note: X = not applicable.



The results in the last three columns may look abnormal. As discussed earlier, this is partly
because inequality was measured over the logarithm of income and partly due to the large
and positive estimate of the intercept term. The abnormality will disappear once inequality
is measured over the original income, based on the same estimated regression equation.
See Case 3 below. The abnormal results are presented here to demonstrate the inadequacy
of FY in measuring inequality over logarithm of the target variable. In practice, results in
Table 2 should be discarded altogether in favour of Table 3, if one insists on fitting a
semilog income generation function. Readers are reminded that results of FY and MS
cannot be compared with ours as their frameworks are flawed. We present their results in
Tables 1-3 to highlight cases where their methods are not applicable.

The flaws in MS and FY are even clearer according to Table 2. Given the fact that a
positive constant must exert negative contributions to total inequality, contributions from
the residual term and other variables must add to more than 100 percent. The approaches
given by both MS and FY, when CV/Var is used, are not capable of producing this result—
they always add to 100 percent no matter what. Meanwhile, the deficiency of MS is
reflected in their Theil-T decomposition results—a majority of income inequality is
accounted for by the unknown residual term. This reaffirms our conclusion made earlier. In
sharp contrast, our framework produces a reasonable range of residual contributions under
alternative inequality measures. Again, the many Xs in Table 2 indicate the non-
applicability of both MS and FY in most cases.

Case 3: Semilog income-generating function with inequality measured over original
income

Measuring inequality over logarithm of the target variable is not recommended for the
obvious reason that it distorts the whole distribution picture. Many unanswered questions
arise when the target variable is being transformed into logarithms. In fact, even the
simplest linear transformation will distort distributions (e.g., addition or subtraction of a
constant from observed income data). Nevertheless, it could be argued that a semilog or
double-log income-generating function is better than the linear form in that predicted
values of income from logarithm models are ensured to be non-negative.

To have the ‘goods’ of both worlds (one with logarithm income-generating function and
one demanding inequality measurement over original income), one possibility is to
estimate the income-generating function in semilog or double-log form and then take
exponentials to transform the estimated equation. In doing so, inequality can be measured
over original income while the advantage of logarithm income-generating functions are
preserved. Doing just that with our estimated semilog function gives

Income = Exp{4.52 + 0.15 HH + 0.002 K + 0.15 ED — 0.007 DEP — 0.04 Land
(25.55) (4.75)  (11.73) (11.09) (-5.42)  (-7.62)

+ 0.02 TVE + year dummies + residual }
(29.57)

No conventional methods nor any of the existing regression-based techniques can be
employed to conduct inequality decomposition based on the above income-generating
function, if one wishes to study the contributions of individual determinants. This remains
the case even if the constant and residual terms can be ignored or properly dealt with. The



only alternative is the Shapley value approach of Shorrocks (1999). It is beyond the scope
of this paper to consider individual contributions given our focus on the pitfalls of
regression-based approach to inequality decomposition. Nevertheless, the procedure
proposed in this paper can still be applied to handle the residual and the intercept terms and
the results are presented in Table 3.

Table 3: Contributions to income inequality: exponential of semilog function (%)

Inequality FY MS This Paper

Index Residual Constant Other Residual Constant Other  Residual Constant Other
Gini X X X X X X 17.15 0 82.85
CV/Var X X X X X X 7.22 0 92.78
Theil-T X X X X X X 19.62 0 80.38
Theil-L X X X X X X 24.65 0 75.35
Atkinson X X X X X X 24.09 0 75.91

Source: Author’s calculations.

Note: X = not applicable.

Table 3 demonstrates most clearly the advantages of the proposed procedure as none of
early approaches are applicable at all once the underlying income generating function takes
on a nonlinear form.

The 0 contributions from the constant term are acceptable because, with this particular
income generating function, the constant term acts as a scaler of total income for all
income recipients. Thus, the presence or absence of the constant term should not matter at
all and this is exactly what is given by the proposed procedure. In passing, it is noted that
the Shapley value decomposition will always attribute 0 contributions to constant terms in
regression models—a potential drawback of the Shapley value approach.

If one examines the last three columns across Tables 1-3, it is clear that the contributions
of residual terms are broadly comparable. Moreover, our procedure attributes most
inequality to known sources including constant and various income determinants. This
ought to be the case given the reasonable quality of the estimated models. In sharp
contrast, MS mostly produces large percentage contributions to the unexplainable residual
term. The FY framework is severely limited not only in terms of functional form but also
in terms of inequality measures. While unclear as to their claim of generality, the
contributions identified in Table 2 refute their claim that measures of inequality are of no
relevance when inequality is measured over logarithm of income. For example, apply the
Gini coefficient will result in 100 percent contribution being allocated to the included
income determinants and nothing to the residual and the constant terms. But using CV/Var
always attributes 0 to the constant term, 1-R* to the residual term and R* to the other
determinants, where R? is the usual coefficient of determination.
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4 Summary and concluding remarks

This paper explores pitfalls commonly associated with regression-based inequality
decompositions. A solution procedure is proposed to rectify these pitfalls. This procedure
is applicable irrespective of the form of the underlying regression function. It is also
applicable irrespective of what inequality measures are to be used. Empirical results are
presented to demonstrate the use of the proposed procedure and to illustrate deficiencies in
the recent advances in regression-based decompositions. It is important to point out that the
Shapley value decomposition of Shorrocks (1999) would always attribute 0 contribution to
the constant term if this term were eliminated in the same way as other variables are.
In other words, this latest development may also suffer from one of the pitfalls addressed
in this paper. Nevertheless, the residual term could be treated as a normal variable in
Shorrocks (1999), although our procedure seems more intuitively appealing.

As theoretically derived and empirically verified in this paper, the root problems relating to
the constant and residual terms are not caused by the inequality index or indices used.
Fundamentally, the problems lie in the construction of proposed decomposition
methodologies. From this point of view, both Morduch and Sicular (2002) and Fields and
Yoo (2000) are flawed and need to be rectified along the lines discussed in this paper.
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